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Abstract: Climate change-induced extreme precipitation causes coastal flooding. A streamflow
simulation in coastal watersheds, Wolf River Watershed (WRW) and Jourdan River Watershed (JRW),
was conducted using the Soil and Water Assessment Tool (SWAT) to compare variation in flow at
different climates and to analyze the flood frequency. Baseline models were auto-calibrated with
SWAT calibration and uncertainty programs (SWAT-CUP). Kling–Gupta efficiency (KGE), defined as
the objective function in SWAT-CUP, ranged from 0.8 to 0.7 in WRW and from 0.55 to 0.68 in JRW
during the calibration–validation process. Results indicated reliability of the model performances.
Monthly averaged baseline flow was 1% greater than historical and 8.9% lower than future climate in
WRW. In JRW, monthly averaged baseline flow was 11% greater than historical and 5.7% lower than
future climate. Flood frequency analysis showed the highest 1% exceedance probability in annual
maximum series (AMS) of baseline model in WRW, whereas AMS of projected model was estimated
the highest in JRW. This study aids in preparing for future flood management.

Keywords: streamflow; SWAT; climate change; CMIP5; CMHyd; peak flow; annual maximum series;
partial duration series; flood frequency analysis; Log Pearson type III

1. Introduction

The frequency and severity of weather extremes are rising due to climate change [1].
Climate change causes variations in streamflow [2], triggering more frequent flooding
events [3]. In the 21st century, extreme precipitation events are predicted to become more
frequent, surpassing the present magnitude [4]. According to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change (IPCC), climate change is projected to
increase the risk of storms, extreme precipitation, flooding, and storm surges in coastal
regions [5]. Moreover, there is an increasing trend in the population in coastal areas and
the global population is projected to be more than 1 billion by the mid-21st century in the
low-elevated coastal zone [6]. This poses a high risk of extreme events to the public and
property on the coast [7]. Risk assessment of flood-prone areas can be carried out using
a hydrological modelling approach [8–12]. Hydrological assessment of coastal plains is
essential to study the quantity of streamflow, predict the occurrence of extreme events,
analyze its trend in different climatic conditions, and understand the impact of climate
change on the discharge of coastal rivers.

Extensive research has been conducted in flood risk assessment, which led to the
development of numerous mathematical modelling tools over time [13], for instance,
the Soil and Water Assessment Tool (SWAT) [8,11,14], Modélisation de l’Anticipation du
Ruissellement et des Inondations pour des évéNements Extrêmes (MARINE) model [8,15],
Hydrologic Engineering Center-River Analysis System (HEC-RAS) [9,16,17], Hydrologic
Engineering Center-Hydrologic Modeling System (HEC-HMS) [9,18], a two-dimensional
watershed rainfall-runoff CASC2D model [10,19], TOPography-based hydrological MODEL
(TOPMODEL) [12,20], MIKE FLOOD [12,21], among others. The flood risk analysis by
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Ajmal et al. [22] compared the hydrological, hydro-dynamical, and hybrid tools, and
concluded that all models can be used in different scenarios depending on the water level
area. Hydrologic models are effective tools for watershed management planning and
climate change analysis [22].

SWAT is a-semi-distributed hydrologic model [14] capable of modelling future
floods [23] on a watershed scale. It can also be used with space-based flood detection
components for flood risk analysis in ungagged watersheds [24]. As of December 2022,
over 5500 publications were recorded in the SWAT database (https://www.card.iastate.
edu/swat_articles/, accessed on 1 December 2022) [25] regarding its development and
application. SWAT has been used in numerous global studies at different time steps to
investigate the climate change impact on hydrological processes [26–30]. In previous
studies, the SWAT model has been applied for hydro-climatological research [31,32] and
successfully conducted flood frequency analysis [33,34]. The hydrological modelling tools
can account for the complex system of hydrology, quantify the variation in streamflow and
predict the flood-causing potential peak flow events. In this study, the SWAT model was
applied to coastal watersheds where flood frequency analysis is crucial to assess the risk of
weather extreme events in the coastal settlement. Although SWAT is limited to simulating
the tidal influence into the coastal watershed [35], watershed delineated further upstream
tends to have no influence of the tides; therefore, it is not considered in the context of this
study.

The hydrological cycle is affected by climate change [36]. Since the earth’s temperature
drives evaporation, condensation, and precipitation, climate change is likely to disrupt
the hydrological balance. Evidence of a rise in average temperature in recent decades [37]
directly relates to an increase in water vapor content in the atmosphere, leading to intense
rainfall in the coastal area. The coastal watersheds of Mississippi are vulnerable to extreme
weather events. Severe storms, tornadoes, flood incidents, and hurricanes were declared
among the 29 major disasters by the Federal Emergency Management Agency between
2005–2020 in the state of Mississippi [38]. High precipitation is recorded over the years
in the Mississippi coastal watersheds [39,40] that drain into the Mississippi Sound and
eventually onto the Gulf of Mexico. Therefore, the objectives of this study were to: (i) set
up baseline SWAT models for two forested coastal watersheds; (ii) set up a SWAT model
for historical and projected climate conditions; (iii) compare the variation in streamflow
during different climatic conditions with respect to the baseline model; and (iv) analyze the
flood frequency of the stream at different climatic extremities.

2. Materials and Methods
2.1. Study Area

This study was conducted in two forested watersheds: Wolf River Watershed (WRW)
and Jourdan River Watershed (JRW) of Mississippi, United States of America. The Wolf
River and the Jourdan River run through the coastal plain; thus, these are categorized
as coastal streams which fetch fresh water to Saint Louis Bay (SLB). WRW lies between
the latitude of 31◦5′ N and 30◦27′ N and longitude of 89◦35′ W and 89◦15′ W. JRW lies
between the latitude of 30◦44′ N and 30◦22′ N and longitude of 89◦38′ W and 89◦22′ W. Both
watersheds are close to the Gulf of Mexico and are frequently impacted by extreme weather
events. WRW covers an area of 801 km2 and the land use is dominated by forest. The
land use of WRW consists of 46.6% forest–evergreen, 24.9% range–brush, 20.8% wetlands–
forested, and 7.7% pasture. Similarly, the land use of JRW is also dominated by forest. The
total area of JRW is 538 km2 and it consists of 37.9% forest–evergreen, 26.6% range–brush,
18.26% pasture, and 17.3% wetlands–forested. Figure 1 shows the location map of WRW
and JRW in the state of Mississippi. Mississippi has a humid subtropical climate. The
annual average temperature at SLB is 19.9 ◦C, with an average precipitation of 1534.2 mm
annually occurring on an average of 98 rainy days throughout the year.

https://www.card.iastate.edu/swat_articles/
https://www.card.iastate.edu/swat_articles/
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Figure 1. Study area map of the Wolf River Watershed and Jourdan River Watershed in Mississippi.
(CONUS: continental United States).

2.2. Model Setup

Soil and Water Assessment Tool (SWAT) [14], a watershed-scale conceptual process-
based model, was applied to the two adjacent watersheds for evaluating the streamflow
from the coastal plain. GIS-coupled public domain software ArcSWAT is popular world-
wide for hydrological modelling [41]. In the SWAT model, the hydrological analysis is
carried out by dividing a watershed into smaller sub-watersheds and further into discrete
hydrological response units (HRUs) on the basis of the unique combination of its land use,
soil, and slope type [42]. For both watersheds, a baseline model was developed from 1995
to 2010. Additionally, a historical model from 1950 to 1994 and a projected model from 2011
to 2055 were developed to create different climatic conditions for each watershed. Thus,
six different SWAT models were developed to study the hydrologic response of past and
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future climatic conditions ranging 45 years into the past and 45 years into the future from
the baseline model. The basic data used to develop the baseline models are listed in Table 1.

Table 1. Data for the development of baseline SWAT model.

S. No. Data Source

1 Elevation Data:
Digital Elevation Model (DEM) (30 m × 30 m) (2020)

United States Geological Survey (USGS)
(http://viewer.nationalmap.gov/viewer/) (accessed
on 4 October 2022)

2 Land-use and Land-cover Data:
Cropland Data Layer (CDL) (2010)

United States Department of Agriculture-National
Agricultural Statistics Service (USDA-NASS)
(http://nassgeodata.gmu.edu/CropScape/)
(accessed on 4 October 2022)

3 Soil Data:
USSURGO (2020)

United States Soil Survey Geographic Database
(US-SSURGO)
SWAT-USSURGO (https://swat.tamu.edu/data/)
(accessed on 4 October 2022)

4

Weather Data:
NOAA (1995–2010)
Precipitation,
Maximum Temperature,
Minimum Temperature

National Oceanic and Atmospheric Administration
(NOAA)
SWAT—Climate Data (https://swat.tamu.edu/data/)
(accessed on 4 October 2022)

5

Discharge Data:
-USGS 02481510 (1997–2010)
(Wolf River Nr Landon)
-USGS 02481660 (2002–2005)
(Jourdan River Nr Bay St Louis)

United States Geological Survey (USGS)
(https://waterdata.usgs.gov/ms/nwis/) (accessed on
5 October 2022)

The basic data used to develop the baseline models were the 2020 United States
Geological Survey (USGS) Digital Elevation Model (DEM) data (30 m × 30 m resolu-
tion) (http://viewer.nationalmap.gov/viewer/, accessed on 4 October 2022) [43], the 2020
United States Soil Survey Geographic Database (US-SSURGO) (https://swat.tamu.edu/
data/, accessed on 4 October 2022) [44], the 2010 Cropland Data Layer (CDL) United
States Department of Agriculture-National Agricultural Statistics Service (USDA-NASS)
(http://nassgeodata.gmu.edu/CropScape/, accessed on 4 October 2022) [45], and the 1995–
2010 Weather Data-National Oceanic and Atmospheric Administration (NOAA) Climate
Data (https://swat.tamu.edu/data/, accessed on 4 October 2022) [44]. Monthly discharge
data were utilized, collected from USGS 02481510 Wolf River near Landon, MS (1997–2010),
for WRW flow simulation, whereas daily discharge data were utilized from USGS 02481660
Jourdan River near Bay St Louis, MS (2002–2005), for JRW flow simulation due to the
availability of limited data in this gauge station.

DEM, CDL, and USSURGO soil data were fed into the model and the slope classes were
defined. A total of 801 km2 WRW was divided into 15 subbasins and 489 HRUs, and 538 km2

JRW was divided into 13 subbasins and 233 HRUs. The meteorological dataset from NOAA,
retrieved from the SWAT website, was used as local weather data for precipitation and
temperature data (at 21 stations for WRW spanning over five counties, and at 12 stations for
JRW spanning over two counties). The baseline model for both WRW and JRW was then set
up and run for 16 years (1995–2010) with a two-year warmup period each. The simulation
was performed monthly for WRW and daily for JRW. SWAT calibration and uncertainty
program (SWAT-CUP) Sufi-2 [46] was used for the uncertainty analysis of hydrological
parameters and to calibrate–validate the baseline model of both watersheds. This widely
used autocalibration tool was considered in this study because of its simpler calibration
procedure, availability of essential hydrological parameters, uncertainty analysis, and
sensitivity analysis features [46,47]. Kling–Gupta efficiency (KGE) [48] was used as the
objective function in SWAT-CUP for more accurate model calibration. Monthly streamflow
calibration was conducted from January 1997 to December 2003 and validation was carried
out from January 2004 to December 2010 for WRW at USGS 02481510. Similarly, daily

http://viewer.nationalmap.gov/viewer/
http://nassgeodata.gmu.edu/CropScape/
https://swat.tamu.edu/data/
https://swat.tamu.edu/data/
https://waterdata.usgs.gov/ms/nwis/
http://viewer.nationalmap.gov/viewer/
https://swat.tamu.edu/data/
https://swat.tamu.edu/data/
http://nassgeodata.gmu.edu/CropScape/
https://swat.tamu.edu/data/
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streamflow calibration was conducted from 10 March 2002 to 31 December 2003 and
validation was carried out from 1 January 2004 to 30 September 2004 with all the available
data at the USGS 02481660 for JRW. The fitted parameters for the calibrating–validating
baseline model of both watersheds are listed in Tables 2 and 3, respectively.

Table 2. Parameters used in streamflow calibration for Wolf River Watershed.

Parameters Description Fitted Value

CN2 Initial SCS runoff curve number for moisture condition II. 0.133
ALPHA_BF Baseflow alpha factor (days). 0.316
ESCO Soil evaporation compensation factor. 0.217
SOL_K Saturated hydraulic conductivity. −0.018
SOL_BD Moist bulk density. 0.104
SOL_AWC Available water capacity of the soil layer. 0.297

Table 3. Parameters used in streamflow calibration for Jourdan River Watershed.

Parameters Description Fitted Value

ALPHA_BF Baseflow alpha factor (days). 0.917
ESCO Soil evaporation compensation factor. 0.910
GW_DELAY Groundwater delay (days). 1.126

GWQMN Threshold depth of water in the shallow aquifer required for
return flow to occur (mm). 874.982

EPCO Plant uptake compensation factor. 0.698
CN2 Initial SCS runoff curve number for moisture condition II. −0.194
RCHRG_DP Deep aquifer percolation fraction. 0.391

REVAPMN Threshold depth of water in the shallow aquifer for “revap”
to occur (mm). 177.726

SOL_K Saturated hydraulic conductivity. −0.139
SOL_BD Moist bulk density. 0.223
SOL_AWC Available water capacity of the soil layer. 0.038
OV_N Manning’s “n” value for overland flow. −0.010
CANMX Maximum canopy storage. 93.562
SLSUBBSN Average slope length. 0.386
LAT_TTIME Lateral flow travel time. 3.238
CNCOEF Plant ET curve number coefficient. 0.678
CH_N2 Manning’s “n” value for the main channel. 0.023
CH_K2 Effective hydraulic conductivity in main channel alluvium. 65.951
HRU_SLP Average slope steepness. 0.361

Furthermore, to study the impact of historical and projected climate conditions, two
additional models for each watershed were developed for 45 years into the past and
45 years into the future, i.e., 1950–1994 and 2011–2055, respectively, with a warmup period
of 1 year for each model. Development of the SWAT model for historical climate events
requires historical weather data which were collected from Weather Data-NOAA Climate
Data (1950–1994) (https://swat.tamu.edu/data/, accessed on 4 October 2022) [44] for
both watersheds. Additionally, for the development of the SWAT model for projected
climate events, the website of Coordinated Regional Climate Downscaling Experiment-
North America (CORDEX-NA) (https://na-cordex.org/, accessed on 14 October 2022) [49],
which archives Coupled Model Intercomparison Project phase 5 (CMIP5), was accessed
and Representative Concentration Pathway 4.5 (RCP4.5) data from the EC-EARTH driver,
Rossby Centre Regional Atmospheric Model version 4, (RCA4 model) were downloaded
to collect daily precipitation, maximum air temperature, and minimum air temperature
data. In this study, regional climatic model projected data and RCP4.5 (Representative
Concentration Pathway 4.5) emission scenario were used. The regional climatic model
generates high-resolution projections of future climate changes at a regional scale and
RCP4.5 is considered the middle-of-the-road scenario, since it lies between lower-emissions

https://swat.tamu.edu/data/
https://na-cordex.org/
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scenarios (RCP2.6 and RCP3-PD) and higher-emissions scenarios (RCP6 and RCP8.5). In the
context of the United States, the projected mean temperature increases from 2 ◦C under the
RCP 2.6 scenario to 5.5 ◦C under the RCP 8.5 scenario [49]. The regional climatic model at
RCP4.5 does not estimate climate uncertainty but is used to drive climate models to produce
projections of future climate change with more detailed information at a regional scale. The
downloaded NetCDF formatted data were then downscaled by applying the linear scaling
method in the climate model for hydrology (CMhyd) tool available on the SWAT website
(https://swat.tamu.edu/software/, accessed on 20 January 2021) [50]. Historical data
(1951–2005) and projected data (2006–2100) of 50 km spatial resolution were downloaded
from CORDEX-NA and used with NOAA SWAT database’s observed data (1950–2010) for
bias correction and data extraction in order to acquire data from 2011–2055 for the projected
condition. A 90.2% overlap period was achieved with this approach, thus meeting the
recommendation of the CMHyd tool [51]. The baseline model with fitted parameters was
considered a control model, and the model developed based on historical and projected
climate conditions was evaluated using the same set of parameters from the control model
to detect the variation of flow in the past and the future. The flowchart of the methodology
is shown in Figure 2.
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Figure 2. Flowchart of the methodology of SWAT model to study impact of climate change on
flow. (DEM: Digital Elevation Model, CDL: Cropland Data Layer, HRU: Hydrologic Response Units,
Coordinated Regional Climate Downscaling Experiment- North American, CMhyd: Climate Model
data for hydrologic modeling, NOAA: National Oceanic and Atmospheric Administration, SWAT-
CUP Sufi-2: SWAT Calibration and Uncertainty Programs Sequential Uncertainty Fitting version 2).

2.3. Model Evaluation

The simulation performance of the baseline models was evaluated using coefficient of
determination (R2) [52] (Equation (1)), Nash-Sutcliffe Efficiency (NSE) [53] (Equation (2)),
Percentage Bias (PBAIS) [54] (Equation (3)), and KGE [48] (Equation (4)).

R2 is the measure of model fit that shows the linear relation between observed and
simulated data which ranges from 0 to 1. R2 result approaching 1 indicates good model
performance. NSE defines how well the observed and simulated data fits. NSE ranges from
−∞ to 1, 1 indicating a perfect fit. The average tendency of the simulated data to be greater
or smaller than the observed data is measured by PBIAS. PBAIS negative value indicates
overestimation and positive indicates underestimation. KGE is based on the decomposition

https://swat.tamu.edu/software/
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of the NSE and mean square error into correlation, bias error, variation coefficient error.
KGE ranges between −∞ to 1, where 1 is the optimal value.

R2 =

(
∑N

i=1
(
Oi −O

) (
Si − S

)√
(∑N

i=1
(
Oi −O

)2
) ·
√
(∑N

i=1
(
Si − S

)2
)

)2

(1)

NSE = 1− ∑N
i=1(Oi − Si)

2

∑N
i=1
(
Oi −Oi

)2 (2)

PBAIS =
∑N

i=1(Oi − Si)

∑N
i=1 Oi

× 100 (3)

where, Oi = observed value, Ō = mean of observed values, Si = simulated value, S = mean
of simulated values, and N = total number of observations [50–52].

And,

KGE = 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2 (4)

where; r = Linear correlation coefficient between simulated and observed data; α = σs
σo , a

measure of relative variability of the predicted and observed runoff; σs and σo = Standard
deviation of predicted and observed runoff; and β = Bias factor β = µs

µo ; where µ is the
mean of observed and simulated flows [48].

Moriasi et al. [55] hydrologic model calibration criteria for R2, NSE, and PBIAS were
referred to determine the efficiency of the developed model, and Brighenti et al. [56] was
referred for the evaluation criteria of KGE. After satisfactory calibration and validation
of baseline model, the flow in the past (1951–1994 with one year warmup period) and in
the future (2012–2055 with one year warmup period) were compared with respect to the
baseline flow. Historical hydrological extreme events and future hydrological extreme
events were also analyzed. Calibrated-validated period and onwards peak flow events of
baseline model were considered for flood frequency analysis in this study.

2.4. Flood Frequency Analysis

The aim of analyzing the flood frequency was to use probability distribution to relate
the magnitude of extreme flow events to the frequency of occurrence [57]. Log Pearson type
III (LP3) distribution is recommended by USGS to fit extreme events for flood frequency
analysis [58]. Generally, Annual Maximum Series (AMS) is considered as the flow extreme
events for LP3 distribution. In this study, two different approaches were considered to
identify extreme events. The first approach was to sort out AMS, and the second approach
was to generate the Partial Duration Series (PDS) considering the 99th percentile ranked
flow event during the respective period of different climatic conditions. These two data
series of extreme events were fitted in LP3 distribution to generate flood frequency graphs.
Detailed descriptions of the preparation of flood frequency curves using LP3 distribution
can be found in Bulletin 17B guidelines (https://water.usgs.gov/osw/bulletin17b/dl_flow.
pdf, accessed on 9 November 2022) [58].

3. Results
3.1. Streamflow Calibration and Validation

Figure 3 shows the trend of observed and simulated data for WRW monthly streamflow
simulation after the model calibration and validation with SWAT-CUP. The R2 ranged from
0.82 to 0.75 indicating good results, NSE ranged from 0.81 to 0.73 indicating very good
to good results, PBAIS ranged from (−4.9) to (−3) indicating very good results and KGE
ranged from 0.80 to 0.70 indicating good to intermediate results during model calibration
and validation.

https://water.usgs.gov/osw/bulletin17b/dl_flow.pdf
https://water.usgs.gov/osw/bulletin17b/dl_flow.pdf
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Similarly, Figure 4 shows the trend of observed and simulated data for JRW daily
streamflow simulation after the model calibration and validation with SWAT-CUP. The R2

ranged from 0.59 to 0.72 indicating not satisfactory to satisfactory results, NSE ranged from
0.42 to 0.71 indicating not satisfactory to good results, PBAIS ranged from 36.7 to 4.7 indicat-
ing not satisfactory to very good results whereas KGE ranged from 0.55 to 0.68 indicating
intermediate results during model calibration-validation. Less than satisfactory results
for R2, NSE, and PBAIS were observed. However, since KGE was defined as an objective
function in calibration, the performance of the model was intermediate. Underestimation
of the result might have occurred due to the lack of continuous observed streamflow data
or due to the low-gradient topography of the JRW. The results of both model performances
are summarized in Table 4.
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Table 4. Model performance of baseline SWAT model to simulate streamflow at Wolf River Watershed
and Jourdan River Watershed.

Watershed Model Development R2 NSE PBIAS KGE

WRW
Calibration (January 1997–December 2003) 0.82 0.81 −4.9 0.80
Validation (January 2004–December 2010) 0.75 0.73 −3.0 0.70

JRW
Calibration (10 March 2002–31 December 2003) 0.59 0.42 36.7 0.55
Validation (1 January 2004–30 September 2004) 0.72 0.71 4.7 0.68

3.2. Flow Comparison of Different Climate Conditions

The baseline average maximum temperature (Tmaxavg) was 24.60 ◦C, the average
minimum temperature (Tminavg) was 13.67 ◦C and average precipitation (PPTavg) was
3.77 mm for WRW. The acquired dataset shows that the historical Tmaxavg was 0.71 ◦C
warmer and projected Tmaxavg will be 1.60 ◦C warmer as compared to the baseline con-
dition. Whereas the historical Tminavg was 0.01 ◦C cooler and projected Tminavg will be
1 ◦C warmer than the baseline. Additionally, the historical PPTavg was higher by 0.59 mm
and projected PPTavg will increase by 0.78 mm than the baseline condition. Although
PPTavg was higher in the historical condition, Flowavg was observed to be 0.14 mm less
than baseline. Whereas, with increased PPTavg in projected condition, the Flowavg was
observed to increase by 1.23 mm in comparison to the baseline Flowavg of 13.89 mm.

Similarly, the baseline Tmaxavg was 24.54 ◦C, the Tminavg was 14.71 ◦C and PPTavg
was 3.90 mm for JRW. The historical Tmaxavg was 0.58 ◦C warmer and projected Tmaxavg
will be 1.55 ◦C warmer compared to baseline. Whereas historical Tminavg was 0.46 ◦C
cooler and projected Tminavg will be 0.65 ◦C warmer than the baseline. Moreover, the
historical PPTavg was 0.51 mm higher and projected PPTavg will be 0.77 mm higher than
the baseline. Due to the increase in PPTavg in both climatic conditions, the increase in flow
was observed in both climates in JRW. The predicted historical Flowavg was observed to be
1.25 mm high and projected Flowavg was observed to increase by 0.65 mm as compared to
the baseline Flowavg of 11.47 mm.

The trend of streamflow obtained by plotting the monthly averaged flow of SWAT flow
output from the historical and projected models, presented in Figures 5 and 6, was analyzed
with respect to the baseline model. In the context of WRW, there was an increment during
spring and a reduction during fall in both climatic conditions, whereas during summer,
the projected streamflow appeared larger than the historical and, in most cases, exceeded
the baseline, too. Historical flow exceeded the baseline flow in 6 months and was lower
than that in 6 months (Dec–May), whereas projected flow exceeded the baseline flow in 7
months (Jan–May and July–Aug) and was lower than that in 5 months (Jun and Sep–Dec).
Overall, with respect to the baseline monthly average of streamflow, a reduction in the
historical flow and an increment in the projected flow were estimated in WRW.

In the context of JRW, there too was an increment during spring and a reduction during
fall in both climatic conditions, whereas in summer, the projected streamflow appeared
higher in July–August and historical appeared higher in May. However, in the rest of the
cases, both conditions’ streamflow was lower than that of the baseline. Historical flow
exceeded the baseline flow in 6 months and was lower in 6 months (Jan–May and Aug),
whereas projected flow exceeded the baseline flow in 7 months (Jan–Mar and May–Aug)
and was lower in 5 months (April and Sep–Dec). Overall, with respect to the baseline
monthly averaged stream flow, increments in both historical and projected flow were
estimated in JRW.
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3.3. Flow Extreme Events

Annual maximum peak flow series: The maximum flow events of each year from all
climatic conditions were sorted to produce AMS, as shown in Figure 7. In total, 14 peaks
from baseline (1997–2010) and 44 peaks each from historical (1951–1994) and projected
(2012–2055) conditions were captured to obtain AMS for WRW. Similarly, for JRW, 9 peaks
from baseline (2002–2010) and 44 peaks each from historical (1951–1994) and projected
(2012–2055) conditions were captured to obtain AMS.

Partial duration peak flow series: Partial duration peak flow series for every condition
in this study was obtained by defining the 99th percentile ranking; it is plotted in Figure 8.
For WRW, 52 peak flow events in 14 years of the baseline condition, 161 peak flow events
in 44 years of the historical climatic condition, and 161 peak flow events in 44 years of the
projected climatic condition were defined as extreme values for the streamflow. Similarly,
33 peak flow events in 8 years of the baseline condition, 161 peak flow events in 44 years
of the historical climatic condition, and 161 peak flow events in 44 years of the projected
climatic condition were identified in JRW.
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The gamma distribution plot using the shape–scale parameterization for 99th per-
centile peak flow PDS is shown in Figure 9. The plot shows the relation between peak
flows and its probability of occurrence. The probability of occurrence was highest during
the historical condition in both WRW and JRW, whereas the probability of occurrence was
the lowest for the baseline PDS in WRW and projected PDS for JRW. Since the highest
amongst the lowest flow magnitude in all climatic condition PDS of WRW was 146.7 m3/s
in historical PDS, the graph was plotted from 150 m3/s through 1200 m3/s to include
1185 m3/s flow of highest right-skewed projected PDS in Figure 9a. Similarly for JRW, the
highest PDS amongst the lowest flow magnitude in all climatic conditions was 92.17 m3/s.
Therefore, Figure 9b was plotted from 100 m3/s to 1000 m3/s in order to include 934.4 m3/s
highest right-skewed projected PDS. From this distribution, the largest magnitude of the
flow extreme series was predicted during the projected condition for both watersheds.

3.4. Flood Frequency Analysis

The flood frequency analysis was carried out with Log Pearson type III (LP3) dis-
tribution graph using AMS and PDS as shown in Figures 10 and 11 for WRW and JRW,
respectively. A spreadsheet model was developed to compute the exceedance probability
and to plot flood frequency curve using LP3 distribution. Pearson type III deviation was
calculated using standard normal deviation and a skewness coefficient of the logarithm of
peak flow [58]. The 95% confidence interval capturing the uncertainty in the estimate of
flood probabilities of the extreme flow events is also shown in Figures 10 and 11. Lower and
upper bound curves are generated using a probability coefficient with a 95% confidence
interval based on the peak flow records. Plotting the extreme flow values against the
exceedance probability using standardized methods such as LP3 distribution can be used
to extrapolate flooding events beyond the experienced values [58].



Climate 2023, 11, 41 13 of 19
Climate 2023, 11, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 9. (a,b) Gamma distribution plot of partial distribution series. 

3.4 Flood Frequency Analysis  
The flood frequency analysis was carried out with Log Pearson type III (LP3) distri-

bution graph using AMS and PDS as shown in Figures 10 and 11 for WRW and JRW, 
respectively. A spreadsheet model was developed to compute the exceedance probability 
and to plot flood frequency curve using LP3 distribution. Pearson type III deviation was 
calculated using standard normal deviation and a skewness coefficient of the logarithm 
of peak flow [58]. The 95% confidence interval capturing the uncertainty in the estimate 
of flood probabilities of the extreme flow events is also shown in Figures 10 and 11. Lower 
and upper bound curves are generated using a probability coefficient with a 95% confi-
dence interval based on the peak flow records. Plotting the extreme flow values against 
the exceedance probability using standardized methods such as LP3 distribution can be 
used to extrapolate flooding events beyond the experienced values [58].  

Figure 9. (a,b) Gamma distribution plot of partial distribution series.
Climate 2023, 11, x FOR PEER REVIEW 16 of 22 
 

 

  

Figure 10. Wolf River flood frequency curves for the annual maximum series and partial duration 
series. Figure 10. Wolf River flood frequency curves for the annual maximum series and partial duration

series.



Climate 2023, 11, 41 14 of 19Climate 2023, 11, x FOR PEER REVIEW 17 of 22 
 

 

  

Figure 11. Jourdan River flood frequency curves for the annual maximum series and partial dura-
tion series. 

In Figures 12 and 13, both AMS and PDS are plotted together to compare the flood 
frequency curve at different climatic conditions using different peak flow series. Compar-
ing Figures 12 and 13, the peak flow estimated by the AMS series is higher than the one 
estimated by the PDS series in both watersheds. While comparing the 1% exceedance 
probability, i.e., 100-year return flood, it increased by 27% from historical to baseline con-
dition with AMS but decreased by 22% from baseline to projected condition in WRW. 
Similarly, with PDS, the 1% exceedance probability increased by 17% from historical to 
baseline, and decreased again by 15% from baseline to projected condition. 
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series.

In Figures 12 and 13, both AMS and PDS are plotted together to compare the flood
frequency curve at different climatic conditions using different peak flow series. Comparing
Figures 12 and 13, the peak flow estimated by the AMS series is higher than the one
estimated by the PDS series in both watersheds. While comparing the 1% exceedance
probability, i.e., 100-year return flood, it increased by 27% from historical to baseline
condition with AMS but decreased by 22% from baseline to projected condition in WRW.
Similarly, with PDS, the 1% exceedance probability increased by 17% from historical to
baseline, and decreased again by 15% from baseline to projected condition.
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Figure 13. Jourdan River flood frequency curve at different climatic conditions with different peak
flow series.

In JRW, the 1% exceedance probability increased by 8.1% from historical to baseline
and further increased by 17% from baseline to projected with AMS. Similarly, with PDS, the
1% exceedance probability increased from 4.4% from historical to baseline and 10% from
baseline to projected condition.

4. Discussion

This study aims to investigate the impact of climate change on the streamflow from
the coastal watersheds of Mississippi draining into the Saint Louis Bay by comparing
historical and projected climate events. The findings on the model development, and
the calibration–validation process suggest that the SWAT model is capable of simulat-
ing the hydrological phenomenon in the forested coastal watershed as described by
Upadhyay et al. [35]. Moreover, the results of statistical measures were considerably better
in the watershed with continuous discharge data. Both models were able to generate
satisfactory KGE values, indicating the reliability of the model performance [56]. The
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comparison of flow between different climatic conditions depicted an increment of monthly
averaged flow in comparison to the baseline and historical climate. This might have been a
result of the increased precipitation in the coastal watershed of Mississippi as mentioned in
Sankar et al.’s [39] and Parra et al.’s [40] works. Since IPCC [5] highlights the risk of extreme
precipitation and flooding in coastal regions due to climate change, riverine flooding risk
was also analyzed in this study. Flood frequency analysis using LP3 distribution revealed
that the 1% exceedance probability was highest in the AMS of the baseline condition in
WRW, whereas for JRW, the AMS of the projected condition was highest. The increment
in exceedance probability in the future condition in JRW aligns with the recent study car-
ried out on the coastal plain of northeastern United States [59]. Contrary to JRW, the 1%
exceedance probability is the highest in the baseline condition of WRW. Although both
watersheds are adjacent to each other, the flood frequency at the outlet of these watersheds
varies significantly given the same future climate condition. In addition, during the flood
frequency analysis of JRW, we used the AMS baseline condition with only nine years
for peak flow data. Therefore, in the estimation of 1% exceedance probability, there are
higher uncertainties.

Since flood frequency analysis can predict the likelihood of flood occurrence, flood
warning systems and emergency response plans for vulnerable areas can be developed
beforehand. Infrastructure design and construction could consider the magnitude and
frequency of predicted flooding events in order to minimize the unforeseeable damage to
life and property.

5. Conclusions

This study compared the variation in flow in different climates and analyzed the
flood frequencies in the two forest-dominated coastal watersheds, WRW and JRW. Baseline
models for two adjacent coastal watersheds were developed using the SWAT model and
auto-calibrated with the SWATCUP-Sufi2 tool applying KGE as an objective function. The
fitted parameters used to develop an acceptable baseline model were further used to set
up different climatic models to study the impact of climate change on the streamflow of
both watersheds in different periods. The historical climatic model was developed using
observed weather data from NOAA, and for the development of the projected climatic
model, the CMIP5 CORDEX-NA data were downloaded and downscaled using the CMhyd
tool to acquire projected weather data. The streamflow during different climatic conditions
in the past and the future was compared with the baseline streamflow and the variation in
the magnitude was analyzed. Log Pearson type III distribution was used to fit the AMS and
PDS to analyze the flood frequency of the stream at different climatic conditions extremities.
This study quantifies the hydrologic response of Wolf River Watershed and Jourdan River
Watershed due to historical and future projected climatic conditions, which aids in the
management of future flooding.
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